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Quantum Computing

Opportunity to re-examine the foundations of quantum mechanics;

Can provide executable interpretations of quantum mechanics;

Physics is computational;

Computation is physical;

We are striving for a precise mathematical model that quantifies the
actual cost (i.e., resources) needed to perform a physical quantum
computation;

Our framework is that of finite-resource quantum computing and
finite-resource quantum measurement.
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Conventional Quantum Theory

The underlying mathematical structure is a Hilbert space. Let’s
decompose this structure into its basic ingredients: (This is slightly
simplified.)

Start with the field R of real numbers;

Extend it to the field C of complex numbers;

Define a vector space over C;

Define an inner product over the above vector space.

Add postulates defining states, composition, evolution, and measurement.
(More about this later.)
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Quantum Theories

Conventional wisdom is that each of the ingredients of the Hilbert space is
necessary for the formulation of quantum mechanics. But the literature
contains several variants of conventional quantum theory:

Instead of R, one could use the p-adic numbers;

Instead of C, one could use the quaternions H;

Instead of a vector space, one could use a projective space;

Instead of infinite fields, one could use finite fields.
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Explore the finite field approach in depth
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Relevance for Computer Science

Computer science’s starting point is that R is uncomputable;

Real numbers are explicitly rejected as an appropriate foundation for
computation. The intuitive reason is that one must account for
resources;

Turing’s original paper is titled “On computable numbers . . . ”;

Early papers on “Quantum Complexity Theory” (e.g., Bernstein and
Vazirani 1997) spend considerable time proving that quantum
computing can be done with finite approximations of the real numbers.
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Relevance for Physics

In the words of Rolf Landauer (our emphasis):

. . . the real world is unlikely to supply us with unlimited
memory or unlimited Turing machine tapes. Therefore,
continuum mathematics is not executable, and physical laws
which invoke that can not really be satisfactory . . .

Is the universe a computational engine ? Crucially, is it a
computational engine with finite resources ?

The conservation laws (e.g., of energy, mass, information, etc.)
suggest the conservation of computational resources;

Is it possible that extremely large discrete quantum theories that
contain only computable numbers are at the heart of our physical
universe?
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Technical Outline

Vector spaces over unrestricted finite fields.
Schumacher and Westmoreland’s modal quantum theory or Chang et al.
Galois field quantum mechanics.

Vector spaces over i-extended finite fields (Fp with p ⌘ 3 (mod 4)).
Discrete theories with no inner product that are suitable for simple
deterministic problems, e.g, Deutsch algorithm.

Vector spaces over locally orderable fields: Fp with p is an element of the
sequence:

3, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, . . .

Discrete theories with a subspace on which there is an inner product;
conventional quantum theory emerges as the primes chosen as a basis for
computation and/or measurement increase.

Amr Sabry (IU) Discrete Quantum Theories July 2nd, 2013 8 / 39



Theories over unrestricted finite fields
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Modal Quantum Theory (I)

Ignore complex numbers and ignore the inner product and define a
vector space over an unrestricted field;

Focus is F2, the field of booleans;

Scalars: a 2 {0, 1};

Scalar addition (exclusive-or):

0 + a = a a + 0 = a 1 + 1 = 0

Scalar multiplication (conjunction):

0 ⇤ a = 0 a ⇤ 0 = 0 1 ⇤ 1 = 1
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Modal Quantum Theory (II)

One qubit system: 2-dimensional vector space;

Four vectors:

• =

 
0
0

!
|1i =

 
0
1

!
|0i =

 
1
0

!
|+i =

 
1
1

!

Three states: the zero vector is considered un-physical;

Evolution described by invertible maps.
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Modal Quantum Theory (III)

Evolution described by invertible maps. There are exactly 6 such maps:

X0 =

 
1 0
0 1

!
X1 =

 
0 1
1 0

!

S =

 
1 0
1 1

!
S†=

 
1 1
0 1

!

D1 =

 
0 1
1 1

!
D2 =

 
1 1
1 0

!
.

Notes: maps do not include Hadamard and are generally not unitary.
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Modal Quantum Theory (IV)

Measuring |0i deterministically produces 0;

Measuring |1i deterministically produces 1;

Measuring |+i non-deterministically produces 0 or 1 with no
probability distribution.
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A Toy Theory

Schumacher and Westmoreland present modal quantum theories as toy
theories:

Retain some quantum characteristics: Superposition, interference,
entanglement, mixed states, complementarity of incompatible
observables, exclusion of hidden variable theories, no-cloning, etc.

Can implement elementary quantum algorithms such as superdense
coding and teleportation;

Cannot implement richer quantum algorithms: there is no Hadamard.
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A Surprising Development (Hanson, Ortiz, Sabry,
Willcock)

y = |0i

Uf

S† • S†

measure

=<
:;

x1 = |0i
⌦S ⌦S

���⌧⇠⇡⇢�
. . . ���⌧⇠⇡⇢�

xn = |0i ���⌧⇠⇡⇢�
This circuit can be used to solve the unstructured database search in
O(log N) outperforming the known asymptotic bound of O(

p
N) of

Grover’s algorithm;

Our conclusion: these theories are “unreasonable”.
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Analysis

Not enough expressiveness: Need to enrich the operations (e.g.,
include Hadamard);

Too much expressiveness: Need to restrict the operations (e.g., all
transformations must be unitary);

Enriching is easy: use larger, extended, fields;

Restriction is more difficult: need an inner product to even define
what it means to be unitary.
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Theories over i-extended finite fields
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Enriching

Need fields with more structure, specifically “discrete complex
numbers”;

Fields Fp2 where p ⌘ 3 (mod 4) have elements ↵ that behave like the
complex numbers. (E.g. complex conjugation is ↵p .)

Example: F32 has 9 elements:

0
1 �1 i �i
1 + i �1 + i 1 � i �1 � i

These are all the complex numbers one can form using the integers
modulo 3 as real and imaginary coefficients;

Check (1 + i)3 = 1 + 3i � 3 � i = �2 + 2i = 1 � i (mod 3).
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Hermitian Dot Product

Let | i = Pd�1
i=0 ↵i |ii and |�i = Pd�1

i=0 �i |ii;

Define h� |  i = Pd�1
i=0 �

p
i ↵i ;

h� |  i is the complex conjugate of h | �i; YES

h� |  i is conjugate linear in its first argument and linear in its second
argument; YES

h |  i � 0 and is equal to 0 only if | i is the zero vector. NO: in fact
� makes no sense in a finite field in the first place
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An Improvement

Can implement more algorithms (e.g., Deutsch algorithm)

Previous supernatural algorithm does not always work (only when the
size of the field divides 2N � 1)

For a fixed database, matching the supernatural conditions becomes
less likely as the size of the field increases

For a fixed field, one can always pad the database with dummy
records to achieve the supernatural efficiency
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Analysis

Theory is still unreasonable;

We need a proper metric, trigonometric, and geometric constructions;

We can, however, already develop discrete counterparts of the Hopf
fibration, the Bloch sphere and count entangled and unentangled
states: Hanson, Ortiz, Sabry, Tai, “Geometry of Discrete Quantum
Computing”, J. Phys. A: Math. Theor. 46 (2013).)

Number of unentangled n-qubit states (purity 1): pn(p � 1)n;

Number of maximally entangled n-qubit states (purity 0):
pn+1(p � 1)(p + 1)n�1.
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Theories over locally-ordered finite fields
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Inner Product

Let’s look again at the missing property we need: h |  i � 0 and is
equal to 0 only if | i is the zero vector;

For that to even make sense, we need a sensible notion of � in a
finite field;

We need a relation that is reflexive, anti-symmetric, transitive, and
total;

Impossible on the entire field but possible on a subset of the
elements.
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Local Order

Reisler and Smith 1969 propose to define a > b if (a � b) is a
quadratic residue;

Is only transitive if the field has an uninterrupted sequence of
quadratic residues;

Reisler and Smith propose fields Fp with p of the form 8⇧m
i=1qi � 1

where qi is the ith odd prime;

A better sequence is the sequence A000229 whose nth element is
the least number such that the nth prime is the least quadratic
non-residue for the given element.

Good news: there are an infinite number of such fields.
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Example

The sequence A000229 starts with 3, 7, 23, 71, 311, . . .;

The third element is 23; the third prime is 5; we say p = 23 and k = 5

There are 5 elements {0, 1, 2, 3, 4} that are quadratic residues: check
52 = 25 = 2 (mod 23) and 72 = 49 = 3 (mod 23);

Because we deal with differences, any sequence of 5 elements
centered around an arbitrary field element is totally ordered.
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Local Inner Product

Given a d-dimensional vector space, we can define a region where an
inner product can be defined

Example p = 311 and k = 11

Allowed probability amplitudes:

d = 1 {0,±1,±2,±i,±2i, (±1 ± i), (±1 ± 2i), (±2 ± i)}
d = 2 {0,±1,±i, (±1 ± i)}
d = 3 {0,±1,±i}
d = 4 {0,±1,±i}
d = 5 {0,±1,±i}
d � 6 {0}
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Emergence of Conventional Quantum Theory

Replace the Hilbert space with a local inner product subspace;

Not closed under vector addition or scalar multiplication;

But as long as all the probability amplitudes remain within the
selected region, we may pretend to have a full inner product space.

In a numerical computation on a microprocessor, as long as the
numbers are within the range of the hardware, we can pretend to
have conventional arithmetic.
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Deutsch-Jozsa

Common presentations state it is exponentially faster than any
classical algorithm;

. . . and in fact, it takes constant time !

Our analysis shows that the size of the field must increase: one must
pay for the extra precision;

For an input function 2n ! 2, we need k > 23n+2;

For a single qubit, k = 37;

For two qubits, k = 257.
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So far

As the superpositions get denser and denser and the states get
closer and closer to each other, the needed resources must increase;

These resources are captured by the size of the underlying field;

These resources are not apparent if one uses real numbers;

Complexity theorists went to great length to formalize the needed
precision if one uses real numbers (basically T steps require O(log T)
bits of precision)
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Measurement

Key insight: The observer has resources that are independent from
the resources needed to model the system;

An observer that uses “few” resources will get crude information
about the system;

An observer that uses “many” resources will get precise information
about the system;

The notions of “few” and “many” can be formalized by comparing the
size of the field used by the observer vs. the size of the field used to
model the system;

A new insight on measurement: what happens when two quantum
systems with different underlying field sizes interact?
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Example (I)

Given these four 1-qubit states:

| 1i = |0i
| 2i = |0i+ |1i
| 3i = |0i+ (1 + i) |1i
| 4i = (1 � i) |0i+ (1 + i) |1i

All amplitudes are in the required range of p = 311, k = 11, and
d = 2;

Now consider the probabilities of observing various outcomes by an
observer.

Let’s first calculate what an observer with infinite resources will see.
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Example (II)

Normalize using infinite precision numbers

| 1i = 2
p

6 |0i
| 2i = 2

p
3 (|0i+ |1i)

| 3i = 2
p

2 (|0i+ (1 + i) |1i)
| 4i =

p
6 ((1 � i) |0i+ (1 + i) |1i)

Probabilities of measuring 0: 1, 1/2, 1/3, and 1/2

Probabilities of measuring 1: 0, 1/2, 2/3, and 1/2

But this assumes the observer has enough resources to probe the
state enough to distinguish the amplitudes

Mathematically, how do we compute these square roots in finite
fields?
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Example (III)
Another idea based on Reisler and Smith 1969
Approximate square roots calculation in finite fields
Round up to the next quadratic residue
In a field with k > 19:

0p
2 =

p
4 = 2

0p
3 =

p
4 = 2

0p
6 =

p
9 = 3

Observed amplitudes:
���� 1

E
= 6 |0i)���� 2

E
= 4 (|0i+ |1i)���� 3

E
= 4 (|0i+ (1 + i) |1i)���� 4

E
= 3 ((1 � i) |0i+ (1 + i) |1i)
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Example (IV)

Observed probabilities of measuring 0:

{36, 16, 16, 18} � {36, 32, 48, 36}

Observed probabilities of measuring 1:

{0, 16, 32, 18} � {36, 32, 48, 36}

Exact probabilities of measuring 0: 1, 1/2, 1/3, and 1/2

Exact probabilities of measuring 1: 0, 1/2, 2/3, and 1/2

Relative order is preserved but exact ratios (16 ⇤ 3 , 36) and exact
equality are not (16 , 18)
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Example (V)

In a field with k > 1230, a better approximation of the square roots:

0p
200 =

p
225 = 15

0p
300 =

p
324 = 18

0p
600 =

p
625 = 25

Observed amplitudes:
���� 1

E
= 50 (|0i)���� 2

E
= 36 (|0i+ |1i)���� 3

E
= 30 (|0i+ (1 + i) |1i)���� 4

E
= 25 ((1 � i) |0i+ (1 + i) |1i)
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Example (VI)

Observed probabilities of measuring 0:

{2500, 1296, 900, 1250} � {2500, 2592, 2700, 2500}

Observed probabilities of measuring 1:

{0, 1296, 1800, 1250} � {2500, 2592, 2700, 2500}

Exact probabilities of measuring 0: 1, 1/2, 1/3, and 1/2;

Exact probabilities of measuring 1: 0, 1/2, 2/3, and 1/2;

16 ⇤ 3 vs. 36 is now 900 ⇤ 3 vs. 2500; better approximations using
more resources
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Cardinal Probabilities

Given several probabilistic events e1, e2, . . .;

Define a set of “rulers” µ1, µ2, . . . that are “equal” to within some
precision;

Measure each event with its own ruler;

If the rulers are infinitely accurate, the measurement results can be
directly compared; one can say “twice as likely”

Otherwise, one can only speak of “at least as likely as”
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Conclusions

A simple finite field (e.g., booleans) is sufficient for teleportation,
superdense coding, etc. Only thing needed is (constructive and
destructive) superposition

Finite fields that can be extended with i are sufficient for deterministic
algorithms such as Deutsch’s algorithm. In addition to superpositions,
we need limited geometric notions (e.g., orthogonality).

The above theories are, as far as we know, at odds with our present
understanding of physical reality.

Finite fields with locally-ordered elements are rich enough for
conventional quantum theory to emerge as the size of the field
increases.
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Conclusions

Accurate accounting of resources used during evolution using the
size of the field used to represent the evolving amplitudes. The
precision of the numeric approximations provided by the underlying
number system, which is completely hidden in the real number
system, is exposed as an explicit computational resource.

Novel accounting of the resources used by the observer to extract
information from the system

Novel counting of the number of irreducible states, the relative sizes
of the unentangled and entangled states, including maximally
entangled states, i.e., those with zero purity.
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